- Standard algorithm.
- MAX-2SAT is hard:
- (0.954 $\ldots+\varepsilon)$-approximation NP-hard
- (0.943 $\ldots+\varepsilon$)-approximation hard assuming UGC
- There exists a polynomial-time $0.943 \ldots$. .approximation algorithm.

Maximum Acyclic Subgraph

- Order vertices arbitrarily (ordering \prec).
- $G_{1}=(V,\{(u, v) \in E: u \prec v\})$ ("left to right")
- $G_{2}=(V,\{(u, v) \in E: v \prec u\})$ ("right to left")
- Both G_{1} and G_{2} are acyclic and

$$
\max \left(\left|E\left(G_{1}\right)\right|,\left|E\left(G_{2}\right)\right|\right) \geq \frac{1}{2}\left(\left|E\left(G_{1}\right)\right|+\mid E\left(G_{2}\right)\right)=\frac{1}{2}|E| .
$$

Independent Set

Reduction from 3SAT φ to IS instance G_{φ} with n vertices:

- For each clause $c=x \vee y \vee \neg z$, create vertices (c, x), $(c, y),(c, \neg z)$ forming a triangle.
- Add all edges of form $\left(c_{1}, x\right),\left(c_{2}, \neg x\right)$.

$$
\alpha\left(G_{\varphi}\right) \leq n / 3
$$

Independent set A gives an assignment:

- If for some c, we have $(c, x) \in A$, set $x=$ true, otherwise set $x=$ false.
If A is maximal, then

$$
|A|=\text { number of satisfied clauses }
$$

- $\operatorname{OPT}(\varphi)=1 \Rightarrow \alpha\left(G_{\varphi}\right)=n / 3$
- $\operatorname{OPT}(\varphi) \leq \theta \Rightarrow \alpha\left(G_{\varphi}\right) \leq \theta n / 3$

GapIS $_{1 / 3, \theta / 3}$ is NP-hard (apx. factor $1 / \theta$).

Independent Set - the power graph

For $G=(V, E)$, let G^{k} be the graph with $V\left(G^{k}\right)=V^{k}$ and
$\left(u_{1}, \ldots, u_{k}\right)\left(v_{1}, \ldots, v_{k}\right) \in E\left(G^{k}\right)$ iff for some $i \in\{1, \ldots, k\}, u_{i} v_{i} \in E(G$
Observe:

- A_{1}, \ldots, A_{k} independent sets in $G \Rightarrow A_{1} \times \cdots \times A_{k}$ independent set in G^{k}.
- $X=\{a, b, \ldots\}$ independent set in $G^{k} \Rightarrow\left\{a_{i}, b_{i}, \ldots\right\}$ independent set in G for $i=1, \ldots, k$.
Corollaries:
- Maximal independent sets in G^{k} are products of independent sets in G.
- G^{k} has at most $\left(2^{n}\right)^{k}=2^{n k}$ maximal independent sets.
- $\alpha\left(G^{k}\right)=(\alpha(G))^{k}$.

For fixed $k,\left|V\left(G^{k}\right)\right|=n^{k}$ is polynomial,

- $\alpha(G) \geq \beta n \Rightarrow \alpha\left(G^{k}\right) \geq \beta^{k} n^{k}, \alpha(G) \leq \gamma n \Rightarrow \alpha\left(G^{k}\right) \leq \gamma^{k} n^{k}$

GaplS $_{\beta, \gamma}$ is NP-hard \Rightarrow GaplS $_{\beta^{k}, \gamma^{k}}$ is NP -hard (factor $(\beta / \gamma)^{k}$).

Independent Set - random induced subgraph

For induced subgraph H of G^{k}, observe $\alpha(H)=\max \left\{|V(H) \cap A|: A\right.$ maximal independent set in $\left.G^{k}\right\}$.

Suppose each vertex of G^{k} belongs to H independently with probability p.

- for each $A \subseteq V\left(G^{k}\right), \mathbf{E}[|V(H) \cap A|]=p|A|$

By Chernoff inequality, for each $A \subseteq V\left(G^{k}\right)$,

- $\operatorname{Pr}[|V(H) \cap A| \geq(1+\varepsilon) p|A|] \leq \exp \left(-\frac{\varepsilon^{2}}{3} p|A|\right)$
- $\operatorname{Pr}[|V(H) \cap A| \leq(1-\varepsilon) p|A|] \leq \exp \left(-\frac{\varepsilon^{2}}{2} p|A|\right)$

Independent Set - random induced subgraph

Suppose $\alpha\left(G^{k}\right)=\delta n^{k}$ for some $\delta>0$, and $p n^{k}=n^{c}$:

- $|V(H)|=(1 \pm \varepsilon) n^{c}$ a.a.s.
- For largest i.s. B in $G^{k},|V(H) \cap B| \geq(1-\varepsilon) \delta n^{c}$ a.a.s.
- For any maximal i.s. A in G^{k},

$$
\operatorname{Pr}\left[|V(H) \cap A| \geq(1+\varepsilon) \delta n^{c}\right] \leq \exp \left(-\frac{\delta \varepsilon^{2}}{3} n^{c}\right)
$$

Hence, the probability that $\operatorname{Pr}\left[|V(H) \cap A| \geq(1+\varepsilon) \delta n^{c}\right]$ for any of at most $2^{k n}$ maximal independent sets is at most

$$
2^{k n} \cdot \exp \left(-\frac{\delta \varepsilon^{2}}{3} n^{c}\right) \leq \exp \left(k n-\frac{\delta \varepsilon^{2}}{3} n^{c}\right) \rightarrow 0
$$

when $k \ll \delta n^{c-1}$, and thus
$\alpha(H)=(1 \pm \varepsilon) \delta n^{c}=(1 \pm 2 \varepsilon) \delta|V(H)|$ a.a.s.
To (w.h.p.) distinguish between $\alpha(G) \leq \gamma n$ and $\alpha(G) \geq \beta n$ (hard), distinguish between $\alpha(H) \leq(1+2 \varepsilon) \gamma^{k} n$ and $\alpha(H) \geq(1-2 \varepsilon) \beta^{k} n$.

- We need $\delta=\gamma^{k}$ and $k \ll \delta n^{c-1}$: OK for $k=\log n$ and c sufficiently large.
- Approximation factor $(\beta / \gamma)^{k}=n^{\log \beta / \gamma}$.

