- Standard algorithm.
- MAX-2SAT is hard:
 - $(0.954...+\varepsilon)$ -approximation NP-hard
 - $(0.943...+\varepsilon)$ -approximation hard assuming UGC
 - There exists a polynomial-time 0.943...-approximation algorithm.

- Order vertices arbitrarily (ordering \prec).
- $G_1 = (V, \{(u, v) \in E : u \prec v\})$ ("left to right")
- G₂ = (V, {(u, v) ∈ E : v ≺ u}) ("right to left")
- Both G₁ and G₂ are acyclic and

 $\max(|E(G_1)|,|E(G_2)|) \geq \frac{1}{2}(|E(G_1)| + |E(G_2)) = \frac{1}{2}|E|.$

Independent Set

Reduction from 3SAT φ to IS instance G_{φ} with *n* vertices:

- For each clause c = x ∨ y ∨ ¬z, create vertices (c, x), (c, y), (c, ¬z) forming a triangle.
- Add all edges of form $(c_1, x), (c_2, \neg x)$.

$$lpha({\it G}_{arphi}) \leq {\it n}/{
m 3}$$

Independent set A gives an assignment:

 If for some c, we have (c, x) ∈ A, set x = true, otherwise set x = false.

If A is maximal, then

|A| = number of satisfied clauses

- OPT $(\varphi) = 1 \Rightarrow \alpha(G_{\varphi}) = n/3$
- $\mathsf{OPT}(\varphi) \le \theta \Rightarrow \alpha(G_{\varphi}) \le \theta n/3$

GapIS_{1/3, θ /3} is NP-hard (apx. factor 1/ θ).

Independent Set – the power graph

For G = (V, E), let G^k be the graph with $V(G^k) = V^k$ and

 $(u_1,\ldots,u_k)(v_1,\ldots,v_k) \in E(G^k)$ iff for some $i \in \{1,\ldots,k\}$, $u_iv_i \in E(G^k)$ Observe:

- A_1, \ldots, A_k independent sets in $G \Rightarrow A_1 \times \cdots \times A_k$ independent set in G^k .
- X = {a, b, ...} independent set in G^k ⇒ {a_i, b_i, ...} independent set in G for i = 1, ..., k.

Corollaries:

- Maximal independent sets in *G^k* are products of independent sets in *G*.
- G^k has at most $(2^n)^k = 2^{nk}$ maximal independent sets.

•
$$\alpha(\mathbf{G}^k) = (\alpha(\mathbf{G}))^k$$
.

For fixed k, $|V(G^k)| = n^k$ is polynomial,

• $\alpha(G) \ge \beta n \Rightarrow \alpha(G^k) \ge \beta^k n^k$, $\alpha(G) \le \gamma n \Rightarrow \alpha(G^k) \le \gamma^k n^k$ GaplS_{β,γ} is NP-hard \Rightarrow GaplS_{β^k,γ^k} is NP-hard (factor $(\beta/\gamma)^k$). For induced subgraph H of G^k , observe

 $\alpha(H) = \max\{|V(H) \cap A| : A \text{ maximal independent set in } G^k\}.$

Suppose each vertex of G^k belongs to H independently with probability p.

• for each $A \subseteq V(G^k)$, $\mathbf{E}[|V(H) \cap A|] = p|A|$

By Chernoff inequality, for each $A \subseteq V(G^k)$,

•
$$\Pr[|V(H) \cap A| \ge (1 + \varepsilon)p|A|] \le \exp\left(-\frac{\varepsilon^2}{3}p|A|\right)$$

•
$$\Pr[|V(H) \cap A| \le (1 - \varepsilon)p|A|] \le \exp\left(-\frac{\varepsilon^2}{2}p|A|\right)$$

Independent Set – random induced subgraph

Suppose $\alpha(G^k) = \delta n^k$ for some $\delta > 0$, and $pn^k = n^c$:

- $|V(H)| = (1 \pm \varepsilon)n^c$ a.a.s.
- For largest i.s. *B* in G^k , $|V(H) \cap B| \ge (1 \varepsilon)\delta n^c$ a.a.s.
- For any maximal i.s. A in G^k ,

 $\Pr[|V(H) \cap A| \ge (1 + \varepsilon)\delta n^c] \le \exp\left(-\frac{\delta\varepsilon^2}{3}n^c\right)$

Hence, the probability that $\Pr[|V(H) \cap A| \ge (1 + \varepsilon)\delta n^c]$ for any of at most 2^{kn} maximal independent sets is at most

$$2^{kn} \cdot \expig(-rac{\deltaarepsilon^2}{3} n^cig) \leq \expig(kn - rac{\deltaarepsilon^2}{3} n^cig) o 0$$

when $k \ll \delta n^{c-1}$, and thus $\alpha(H) = (1 \pm \varepsilon)\delta n^c = (1 \pm 2\varepsilon)\delta |V(H)|$ a.a.s. To (w.h.p.) distinguish between $\alpha(G) \leq \gamma n$ and $\alpha(G) \geq \beta n$ (hard), distinguish between $\alpha(H) \leq (1 + 2\varepsilon)\gamma^k n$ and $\alpha(H) \geq (1 - 2\varepsilon)\beta^k n$.

- We need δ = γ^k and k ≪ δn^{c-1}: OK for k = log n and c sufficiently large.
- Approximation factor $(\beta/\gamma)^k = n^{\log \beta/\gamma}$.