Summer School on Polynomial Paradigm in Algorithms

Summer 2020

Problem Set 4

1) Recall that a polynomial $p \in \mathbb{R}_{\geq 0}[z_1, \dots, z_n]$ is log-concave if for any $x, y \in \mathbb{R}^n_{>0}$ and any $0 < \alpha < 1$,

$$p(\alpha x + (1 - \alpha)y) \ge p(x)^{\alpha} \cdot p(y)^{1-\alpha}$$
.

For $A \in \mathbb{R}^{n \times m}_{\geq 0}$ and $b \in \mathbb{R}^n_{\geq 0}$, let $T : \mathbb{R}^m \to \mathbb{R}^n$ defined as $y \mapsto Ay + b$. For a log-concave polynomial $p \in \mathbb{R}_{\geq 0}[z_1, \ldots, z_n]$, prove that $p(T(y_1, \ldots, y_m))$ has non-negative coefficients and is log-concave.

- 2) Prove the basis generating polynomial of any matroid with at most 5 elements is real stable.
- 3) Let $p \in \mathbb{R}_{\geq 0}[z_1, \dots, z_n]$ be a homogeneous multilinear log-concave polynomial. Prove that p is completely log-concave.
- 4) $g_{\mu} = \frac{1}{\# \text{Bases}} \sum_{B: \text{base}} z^B$ be generating polynomial of the uniform distribution over the bases of a given matroid $M = ([n], \mathcal{I})$.
 - a) Show that

$$\nabla^2 g_{\mu}(\mathbf{1}) \preceq (\nabla g_{\mu}(\mathbf{1}))(\nabla g_{\mu}(\mathbf{1}))^{\mathsf{T}}.$$

b) Show that for any $1 \le i < j \le n$,

$$2\mathbb{P}\left[i\right]\mathbb{P}\left[j\right]\geq\mathbb{P}\left[i,j\right].$$

In other words, although uniform distribution over bases of a matroid is not necessarily negatively correlated, it is almost negative correlated (up to a factor 2).