Summer School on Polynomial Paradigm in Algorithms

Summer 2020

Problem Set 3

1. Let x be a feasible solution of Held-Karp LP relaxation such that for $e_0 = \{u_0, v_0\}$, $x_{e_0} = 1$. Let $G = (V, E_0)$ be the support of x where $E_0 = E \cup \{e_0\}$. Let μ be a random spanning tree distribution such that for any $e \in E$, $\mathbb{P}_{T \sim \mu}[e] = x_e$. Let $A \subseteq V$ such that $u_0, v_0 \notin A$ and $x(\delta(A)) \leq 2(1 + \epsilon)$. Show that

$$\mathbb{P}\left[|T \cap E(A)| = |A| - 1\right] \ge 1 - \epsilon.$$

2. Given a polynomial $p \in \mathbb{R}[z_1, \dots, z_n]$, the homogenization of p is defined as $p_H \in \mathbb{R}[z_1, \dots, z_{n+1}]$ where

$$p_H = z_{n+1}^{\deg p} p(z_1/z_{n+1}, \dots, z_n/z_{n+1}).$$

For example, if $p = z_1^2 z_2 - z_3$, then $p_H = z_1^2 z_2 - z_3 z_4^2$. Borcea and Brändén and Liggett proved the following theorem:

Theorem 3.1. If $p \in \mathbb{R}_{\geq 0}[z_1, \ldots, z_n]$ is real stable, then so is p_H .

For example, since $z_1z_2 + z_2$ is real stable with non-negative coefficient, $z_1z_2 + z_2z_3$ is also real stable.

- a) Show that p having non-negative coefficient is a necessary condition in the above theorem.
- b) Let $\mu: 2^{[n]} \to \mathbb{R}_{\geq 0}$ be a strongly Rayleigh distribution of degree d. For an integer $1 \leq k \leq d$, the truncation of μ to k, μ_k is defined as follows:

$$\mu_k(S) = \begin{cases} \frac{\mu(S)}{\sum_{T:|T|=k} \mu(T)} & \text{if } |S| = k, \\ 0 & \text{otherwise.} \end{cases}$$

Show that if μ is strongly Rayleigh, then so is μ_k for any integer $k \geq 1$ (as long as μ_k is well-defined).

3. We say a function $f: 2^{[n]} \to \mathbb{R}$ is increasing if for any $A, B \subseteq [n]$ such that $A \subseteq B$, $f(A) \leq f(B)$. We say a distribution $\mu: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is stochastically dominated by $\nu: 2^{[n]} \to \mathbb{R}_{\geq 0}$, $\mu \leq \nu$, if for any increasing function $f: 2^{[n]} \to \mathbb{R}$, $\mathbb{E}_{\mu}[f] \leq \mathbb{E}_{\nu}[f]$. Borcea, Brändén and Liggett showed that for any strongly Rayleigh distribution μ and integer k,

$$\mu_k \prec \mu_{k+1}$$

as long as μ_k, μ_{k+1} are well-defined. Let $\mu: 2^{[n]} \to \mathbb{R}_{\geq 0}$ be a strongly Rayleigh distribution. For disjoint sets $A, B \subseteq [n]$, let $T_A := |A \cap T|, T_B := |B \cap T|$ for $T \sim \mu$.

a) For non-negative integers n_A, n_B and $n := n_A + n_B$ show that

$$\mathbb{P}\left[T_A \leq n_A | T_A + T_B = n\right] \geq \mathbb{P}\left[T_A \leq n_A | T_A + T_B \geq n\right].$$

b) Recall that in assignment 1 we showed that any SR distribution is negatively correlated. Indeed, they prove a stronger property for strongly Rayleigh distributions, namely, negative association. For any two increasing functions $f, g: 2^{[n]} \to \mathbb{R}_{\geq 0}$ that depend on disjoint sets of coordinates, $\mathbb{E}[fg] \leq \mathbb{E}[f] \mathbb{E}[g]$. Show that

$$\mathbb{P}\left[T_A \leq n_A | T_A + T_B = n\right] \geq \mathbb{P}\left[T_A \leq n_A\right] \mathbb{P}\left[T_B \geq n_B\right].$$

c) Prove that

$$\mathbb{P}\left[T_A = n_A, T_B = n_B | T_A + T_B = n\right] \ge \frac{1}{n} \min\{\mathbb{P}\left[T_A \le n_A\right] \mathbb{P}\left[T_B \ge n_B\right], \mathbb{P}\left[T_A \ge n_A\right] \mathbb{P}\left[T_B \le n_B\right]\}.$$